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John L Cardy 
Department of Physics, University of California, Santa Barbara, California 93106, USA 

Received 10 October 1983 

Abstract. We describe a model of the spread of an epidemic on a lattice, in which sites 
may be infected by their neighbours, after which they recover and are subsequently immune. 
It corresponds to a modification of the directed percolation problem, and also to a growth 
model of clusters. The model is analysed using a continuum field theory, both within a 
self-consistent approximation and using an E expansion below six transverse dimensions. 

The problem of directed percolation, which has applications in many different fields, 
has been discussed extensively in recent years (Kinzel 1982). The directed site percola- 
tion problem may be realised on a lattice of sites ( r ,  t ) ,  where t is an integer-valued 
‘time’ coordinate. The site ( r ,  t )  is connected to a set of ancestor sites (r’, t - 1) by 
bonds. A set of source sites at t = 0 is prescribed. Then ( r ,  t )  is connected to the 
source with probability p if at least one of its ancestors (r‘, t -  1) is connected to the 
source. Otherwise it is not connected. This defines a Markov process. There is a 
critical value pc ,  such that, for p < p c ,  the number of sites connected to the source 
decays exponentially as t + 03, while for p > pc ,  this number grows like t d ,  d being the 
number of transverse dimensions. Close to p = pc, the large-scale behaviour is charac- 
terised by universal critical exponents. 

Directed percolation may be interpreted as an epidemic problem (Mollison 1977, 
Bailey 1975). Infected sites are those connected to the source. An infected site ( r ,  t )  
itself infects its neighbours at time t + 1 with probability p.  However, in this model, 
it then immediately recovers, and is as equally likely to be re-infected as before. 

This problem may now be modified by supposing that a site which has been infected 
at times t‘ < t has a probability p - q  of being re-infected at time t ,  given that one of 
its neighbours is infected. The case q > 0 corresponds to increased immunity, while 
q < 0 represents increased susceptibility to re-infection. The extreme case p = q of 
total immunisation corresponds to a growth model of a colony of organisms on a food 
substrate. Infected sites correspond to live tissue, and immune sites to those where 
the food has been used up. 

The model is now non-Markovian in that the development of the system at time 
t depends not only on the configuration of infected sites at time t -  1, but also on their 
whole previous history. It shares this property with other kinetic growth models. It 
is important to realise that the model described above is different from that described 
by Alexandrowicz (1980), which generates percolation clusters. In that model, an 
infected site may infect its neighbours with probability p ,  but if it fails to infect a 
particular site, that site may not be infected subsequently. By contrast, in the epidemic 
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model described above, we may attempt to infect a given site an arbitrary number of 
times, until we succeed, when it becomes immune. It will turn out that this model is 
in a different universality class from percolation, although its upper critical dimensional- 
ity is the same, d, = 6. Thus, it seems different from a similar epidemic model discussed 
by Grassberger (1982). 

In this letter we describe the field theoretic formulation of this problem, and present 
the results of an E expansion about the upper critical dimensionality, near the critical 
point p = pc.  We also formulate a self-consistent approximation which neglects correla- 
tions, but which should be valid away from the critical region. 

Although it is possible to give a systematic derivation of the field theory as an 
approximation to the microscopic theory at large distances and times, we shall give 
only an heuristic derivation here. Recall that the effective field theory for directed 
percolation is given by an action (Cardy and Sugar 1980) 

SI = dt  ddX(+drcp + & V +  * Ocp +A,+cp +$po+cp2-$uoQ'cp) (1) i 
where A o N ( p c o - p )  and pco is the mean-field value of pc.  In the site problem, the 
probability that ( r ,  t )  is connected to the source (0 ,O) is? 

G(r, t )  =p( (1  - e - ~ ' ( r , r ) ) ( e ' ( o ~ O ) - l ) ) ~  (2) 

Now consider the case when p depends locally on ( r ,  t ) .  Neglecting irrelevant terms, 
this may be accounted for by including this variation in Ao(r, t ) .  In the case in question, 
p ( r ,  t )  is determined by whether the site r has been infected in the past. The probability 
that this has not happened is (e-'(r.r')(e'(030)- 1)). Thus 

which leads to a similar dependence of Ao(r, t ) .  Because the averaging in (3) is carried 
out at times t' < f, it may be shown that, in computing correlating functions of quantities 
at time t with 11, it is permissible to replace (3) by the operator expression 

A similar argument has been used in constructing the field theory for the true 
self-avoiding walk (Amit et a1 1983, Obukhov and Peliti 1983). Expanding the 
exponential in (4), we see that (1) has to be modified by the substitution 

A o + A o + A o  cp(r, t ' )  d t ' + .  . . ( 5 )  iof 
where A O K q  The higher-order terms may be shown to be irrelevant near six 
dimensions. The new interaction term which has to be added to  S ,  is then 
A. d t  ddx 5 dt' e(?- t ' ) + ( x ,  t)cp(x, t)cp(x, t ' ) .  The non-locality in time is a consequence 
of the non-Markovian property. 

The one-loop diagrams contributing to the renormalisation of the propagator and 
Ao,  oo are shown in figure 1. The most relevant diagrams near d = 6 transverse 
dimensions do not involve pol and depend on Ao, oo only through the combination 

t The fields cp, (p are related to those of Cardy and Sugar (1980) by cp = i#, 4 = -& 
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Figure 1. One-loop diagrams contributing to the renormalisation of ( a )  the propagator, 
( b )  U,. (c) A,. The broken line represents e([- t‘) .  

go = hoco. A study of the diagrams to all orders shows that no more relevant non-local 
couplings, for example l l ld t  dt’ dr” $ ( t ) c “ t ’ ) p ( t ’ ’ ) ,  are generated. In 6 -  E transverse 
dimensions, the theory has a stable fixed point at go = 320&/1229+ O ( E ~ ) ,  whose basin 
of attraction is g,>O, corresponding to q > O .  This fixed point controls the critical 
behaviour of the epidemic process with immunisation. The scaling law for G(r ,  t )  (the 
probability that a given site is infected) is summarised by 

which becomes, at p = pc,  

G(r ,  t )  - f - - ( v \ i - d u L - ” ) / u  q( (r l  t - ’ l Z )  ( 7 )  

where z = vil/v,. To first order in E, 

y = 1 + 1 6 0 ~ / 1 2 2 9 ,  (8) 

v ~ I =  1 + 4 0 ~ / 1 2 2 9 ,  ( 9 )  

v L  = ; + 3 0 3 ~ / 4 9 1 6 .  (10)  

The number of infected sites is Z,G(r,  t ) ,  which scales at p = p c  as t ‘ Y - l ) l ” l .  On the 
other hand the number of immune sites scales as Z,,,, Z, G(r ,  ?’), and therefore behaves 
like f ( y - l ) ’ u ~ ~ + ’ .  The fractal dimensions of the sets of infected and immune sites, defined 
in terms of their volumes and radii of gyration, are ( y  - 1 ) /  v, and ( y  - 1)/ vL + z, 
respectively. 

For q < 0, the case of increased susceptibility, the fixed point is not accessible, and 
trajectories flow out of the region of validity of perturbation theory. We are therefore 
able to make no definite statement about this case. One possibility is that such 
trajectories end on p - q = 1. In this case we may expect the cluster to grow compactly 
(with fractal dimension d ) ,  even at pc .  

The qualitative behaviour of the model away from criticality may be analysed in 
a self-consistent approximation, which is equivalent to neglecting interactions in the 
field theory. The probability that ( r ,  t )  is infected is written G(r,  t )  = p ( r ,  t)Go(r, t ) ,  
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where Go has the same behaviour as in directed percolation (Cardy and Sugar 1980), 
namely 

( 4 ~ D t ) - ~ ”  exp( -r2/4 Dt - At)  ( P G P c ) ,  

( P > P c ) .  

Neglecting correlations, the probability that ( r ,  t )  is immune is 

1 G ( r , r ’ ) -  1 G ( r , t ” ) G ( r , t ’ ) +  . . . =  1-exp 
f’cf f”<  r ’ <  r 

Thus we may write, using a continuum approximation, 

G(r ,  i) = Go(r, t ) [  p - q [  1-exp( -lof G(r,  t ’ ) )  dl‘]}. 

This integral equation may be solved readily by converting it to a differential equation. 
For p < pc, G has the same qualitative behaviour as Go. For p > pc we find 

G(r,  2 )  = p ( p - q ) O (  Vt - k b / { p -  4 exp[-(p -4H Vt - jr1)l). (13) 
The infected sites form an expanding sphere. The density of infected sites is p near 
the edge of the sphere, but is reduced (for q > 0) to p - q  deep inside. The density of 
immunised sites, from ( 1  l),  is 

P{1 -exP[-dP- 4 ) (  Vt - lk l ) lm-  4 exp[-dp-  4)(  vt- IrOl) (14) 

which vanishes on the surface of the sphere, but tends to unity deep inside. Interesting 
special cases are p = q (total immunity), when the density of infected sites inside the 
sphere tends to zero like t - ’ ,  and p - q  = 1 (total susceptibility), for which all sites 
within the sphere become infected. 

The author acknowledges useful discussions with Y Gefen and V Hakim. This work 
was supported by NSF Grant No PHY80-18938. 
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